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The study of photoelectron-
 angular distribution can 

provide significant information 
about the photo-atom 

interaction not available from 
total cross section 

measurements.
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from very 
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efficiency
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QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.
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Differential cross section in the 
dipole approximation

 dσ/dΩ=σ/4π[1+β(3cos2θ−1)/2]

β=2

β=0 β=−1

β=1

e-

+
θ



State of the art methods 
available today
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are needed to see this picture.
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Cold target recoil ion 
momentum spectroscopy  

QuickTime™ and a
GIF decompressor

are needed to see this picture.



T. Reddish Nature 431, p404 2004 Nature 431, p437 2004

However, there has been considerable 
experimental effort over the years to reduce 

the velocity distribution of the ions. The use of 
supersonic beams in ionization experiments is 

one method that results in a much smaller 
transverse velocity spread. Another example is 
the use of laser cooling techniques leading to 
very ‘‘cold’’

 
trapped atoms with temperatures 

down to;1 μK—or colder in the case of Bose–
 Einstein condensation.

T. Reddish Rev. Sci. Instr. 72,p1330 2001



Using ions we get 4π
 

angular 
detection efficiency 

The problem is:
•The thermal energy prior to ionization is in 

the meV range. 
•The recoil energy is about μeV ! 

•solution: use very cold samples.
•With supersonic jets it is possible to achieve 

thermal energy of 10 μeV in 1D.
e-

Cs
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Laser cooling and trapping
MOT-

 
Magneto-optical trap

• Contain up to 109 atoms
• Temperature 10-100 μK
• Density up to 1012atoms/cm3

•
 

Spontaneous emission-
 symmetrical distribution



Time of flight line shape as a 
function of β
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Where we are compared 
to other methods.



Cs Cooper Minimum

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.
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QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
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are needed to see this picture.

Sc open 
shell atom

Z. Altum S. Manson, Phys. Rev. A R 61, 030702-1 (2000)



Experimental set-up

L. Coutinho et at. 
Phys. Rev Lett. 

93,183001(2004)

We have achieved
with laser cooled atoms, 

thermal energies
smaller than 10 neV!



Single Bunch: exploring 
the time dimension

Usually there are 147 bunches separated by 2ns



60 ps Bunch of 
UV photons 
every 311 ns

Single bunch electrons

Stabilized Lasers

1m long TOF
Spectrometer



Photons: 16.0
 

eV

Ions: 51.3
 

μeV

Photons: 35.0 eV

Ions: 74.3
 

μeV

Photons: 17.0±0.3
 

eV

6s Ions: 55.3 μeV 

5p Ions: 0.9
 

μeV

Recoil from 
ejected 
electron 

from 6s and 
5p

L. Coutinho et at. Phys. Rev Lett. 
93,183001(2004)



5p56s6d 2P1/2 5p56s6d 2D3/25p56s5d 2D3/2

β≈0 β=0.7 β<0

β=0.75

L. Coutinho et at. Phys. Rev Lett. 
93,183001(2004)



Bessy  and laser ball cup



New measurements at 
Bessy
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Probing laser excited 
atoms
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Beta parameter Initially 
excited atoms
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5p threshold and 
asymmetry parameter 
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Conclusions

We have demonstrated a novel 
technique capable to measure with 
high precision photoionization angular 
distribution of laser excited atoms
Angular distribution can not be 
obtained almost as fast as TIY 
spectra.
We have observed a new class of 
Copper minima due to interchannel
coupling



Ultra-cold polar and 
none polar molecules

Cold means 1-1000mK, ultra cold <1mK
Last nine years started from 0 to 9 techniques
They are easy to be manipulated with electromagnetic 
fields and be traped.
Chemical reactions have been shown to occur rapidly at 
temperatures near zero Kelvin.
Once the amount of molecules produce a large can we find 
a new state of matter? Ultra cold chemistry can be 
developed? Quantum computers from polar ultra cold 
molecules since the large electric dipole moments of polar 
molecules produce a strong inter-particle interaction.
Possible molecules to be formed RbCs,KRb,KCs.

Reported 1012molecules/cm-3.



Interesting questions we 
would like to address

How can we control better chemical reactions and 
collisions in general?
How far can we improve our understanding of many 
body physics using ultra-cold polar and none polar 
molecules?
What dynamical effects will we find when we ionize from 
excited electronic and vibrational states of cold 
molecules?
What is the double ionization limit of Rb2 and Cs2
molecules?
Does the angular distribution of photoelectrons follow 
the current theory close to the double ionization 
threshold ?
Do we see also interesting changes in the angular 
distributions of photoelectrons outside the resonances? 
For this studies we will need pre-aligned molecules.



Experimental details 
connected IRMS on Ultra- 

cold Molecules



Shining in Bessy
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